
THE TRUSTED FUNCTION IN SECURE DECENTRALIZED PROCESSINGf

P. Tucker Withington

The Ml TR E Corporation

Badford, Massachusetts 01730

The information processors in a decentralized
ccmputing system must trust each other enough to be
mutually supportive, yet they must also protect
themselves to maintain autoncmy. In a decentral-
ized system, data security is especially important
because the effects of compromise or sabotage can
be so wide-ranging.

The trusted function is an ad hoc solution to——
a problem with present data security models. This
“consistency” problem, never previously addressed
in a formal manner, is aggravated in the decentral-
ized processing setting.

The paper examines the consistency problem and
proposes an addition to existing security models to
address the problem. Using the model, the impact
of the trusted function on secure, decentralized-
processing system design is assessed.

INTRODUCTION

The objective of this paper is to examine the
concepts of ccxnputersecurity in the decentralized
processing setting. One particularly weak point of
present ccxnputersecurity systems, the ‘*trusted
function”, becomes quite difficult in this new set-
ting. The notion of the trusted function is scru-
tinized and a technique for supporting it in a
decentralized processing system is discussed.

+This research was supported by the Defense
Advanced Research Projects Agency under ARPA Order
No. AO-3338, Contract No. F19628-’79-C-OOI,MITRE

Background

The computer security problem has been
thoroughly investigated for single-locationsys-
tems. The present technological solution, the
rjsecuritYkernel!!,is simple enough and well-

understood enough that many feel it can easily pro-
vide a solution for the distributed case. Some
even believe decentralized processing will ease the
security problem by providing each user with his
own isolated hardware. It is not clear, however,
that the security kernel or some of its ‘lacces-
sories!tare so easily extended to the decentralized
case.

Because of the new setting, a fresh examina--
tion of the security problem should be undertaken.
In a decentralized system, the processors must
establish some level of mutual trust to perform
useful work (to maximize the advantage obtained by
interconnection). Protection is even more of a
consideration than in the single-locationcase,
however, because the possibility of compromise or
sabotage is enhanced by the same interconnection
mechanism, and the payoff to an agent or saboteur
is similarly raised.

Synopsis

This paper introduces the “consistency prob-
lem’t,a problem in current secure systems that is a
major impediment to secure, decentralized process-
ing. Current solutions are reviewed and some dif-
ficulties are discovered. After summarizing an
exisiting formal security model, an extension to
solve the consistency problem is proposed and its
interpretation is discussed. Finally, the model is

applied in the decentralized processing setting and
the resulting implications examined.

THE CONSISTENCY PROBLEM—

Project No.”8060. The views and conclusions
contained in this paper are those of the author

The purpose of decentralized processing is to

and should not be interpreted as necessarily
link together independent processors, each

representing the official policies, either
expressed or implied, of the Defense Advanced 1
Research Projects Agency or the United States

The term “decentralizedprocessing” is due to

Government.
Karger [11.

CH1522-2C/80/000@O067$O0.75 @ 1980 IEEE
67

providing useful services, in such a way as to
enhance these services through their mutual sup-
port. To allow a user to take advantage of these
interconnected processors, provision must be made
for: common information storage, a uniform inter-
face to processing tools, and a technique to con-
trol users on a network basis. [2,3]

From the security viewpoint, these three ele-
ments of decentralized processing correspond to:
passive information containers, active information
accessors, and the external system interface,
respectively. Exactly how the notion of security
affects these aspects of the distributed system is
taken up after an examination of single-location
security concepts.

Data Security

What are the requirements of data security?
Most basic is the requirement that no unauthorized
observation of protected data be allowed. This
requirement has two facets. First, the protected
data might be directly observed in an unauthorized
manner — espionage; or second, the data might be
indirectly or covertly observed with the aid of an
inside accomplice, releasing information —
treachery.

How do these requirements map into a computer
system? One critical, but not obvious, point is
that all objects in the system must be treated as
data ~ositories — even the active observers and
modifiers (they must have a place for the data they
manipulate). With this simplification,we see that
data security means: for any transfer of data from
one repository to another (within the system), or
to or from outside the system, it must be ensured
that the transfer is ‘Permitted?’.

The concept of permission is also known as the
security policy. This policy determines what
transfers of data are allowed. A straightforward
policy, which can be shown to correspond to the
security policy of the Department of Defense, can
be defined as a function, mapping ordered pairs of
containers into allowed or disallowed. The mapping
defines whether the transfer of information from
the first container of the pair is allowed to the
second.

Because the permission function is independent
of the information transferred, such a simple pol-
icy is known as an information flow model; it is
the path the information flows along and not the
information transferred that is regulated. While
this does not exactly model the security system of
the paper information domain, it has been accepted
as a reasonable choice for the computer processing
domain. A resulting problem, however, is how to
best keep the two domains (internal-ccmputerand
external-paper) in correspondence,or consistent.

Consistency

The “consistency problem” involves establish-
ing and maintaining protection information in the
computer domain in agreement with the paper domain.
As information enters and leaves the system, and
while it resides in the system, the protection

information about it must be kept consistent with
the external environment.

Usually, this protection information is held
in a “protectiondata basettthat embodiesthe secU-
rity permissionfunctionfor all the information
containersin the system. In an implementation,
the accesscontrolmechanismenforcesthe security
policyby referringto this protectiondata. A
difficultpointin earlysecuritymodellingwork
was how this databasewould be maintained.

History

The “trusted function” evolved as a special
purpose mechanism in response to the realization
that the simplistic security model prevented one
from accomplishing many tasks required in everyday
use of the computer system (e.g., reclassifying old
information, classifying new information). Ini-
tially, the trusted function was exempted from the
model controls because it was trusted to violate
the model only to keep the system consistent with
the external environment.

Stork [41 presented a model for these trusted
functions based on the ‘tformularyconcept’!: the
idea that the correct classification of an informa-
tion container could be determined from some compu-
tation on its contents. This concept was initially
favored because it worked outside the existing
security model, but in the end, opinion was that
the formulary was impossible to establish. Also,
this model addressed only one facet of the con-
sistency problem: downgrading. It did not address
other operational requirements, as we shall see
arise in a secure network design.

As implementations evolved, it became clear
that there was a second type of trusted function
that did not violate any security axioms, but was
known to have an important security effect. These
trusted functions dealt with the consistency prob-
lem by directly manipulating protection data. The
mechanism was trusted to handle the protection
information correctly.

Functions of that type have recently become
known as ‘responsible software”. These trusted
functions did not fit either the security model or
Stork’s model, as they were not violating any model
rule. Nonetheless, they were manipulating what was
known to be highly sensitive data. As a result, an
ad hoc3 mechanism evolved [5,6] to provide the.-
requlred function.

Mogilensky [7] provided the first recognition
of these requirements as a general problem of
interfacing distinct security systems. He

‘Work continues on trying to maintain traces
(colors) of the origin of information in a file
such that a computation of its overall
classification can be derived, but it is of an
experimental nature.

3By ad hoc we imply: without formal modelling or
spe~f~t ion.

68

attempted to define the requirements for communi-
cating protection information from one domain to
another. Schiller [8] finally succinctly defined
the trusted function as providing ‘t...the security
related binding of computer system elements to the
external environment!!.

In these early designs, a special interface to
support the trusted function was implemented by a
reserved key on the user terminal that caused
activation of a trusted cotmnunicationpath. The
trusted path provided two features not provided by
the basic access control mechanism: a high degree
of reliability in preventing the injection of
spurious or misleading data4, and the ability to
accurately identify the participating parties in
the conrnunication.

Preview

What the trusted function and its associated
interface attempted to do is to recognize the
existence of a special kind of information in the
ccmputer system, different from the data of the
system, and to provide a mechanism for handling it.
Unfortunately,the full importance of this “con-
trolttinformation was never recognized in the
single-locationsystem work, and it was never Suc-

cessfully specified or modelled. Next, an attempt
is made to do so.

TRUSTED FUNCTIONS

Present

The original security model dealt only with
information and not information about information.
Many attributes of protected information can be
handled by the same mechanism that protec~the
information5. Some “meta’!information does not fit
into the model of security, however, because it is
the model (or its representation). Still, it is%
information system, and to deal with it correctly,
a model should be developed. Figure 1 illustrates
the existing information flow security model and
highlights the meta-informationof concern, the
protection data base.

Initially, it is not clear that this meta-
information has any analogue in the paper informa-
tion domain. There, both the information distribu-
tion channel and the end user are trusted to main-
tain the protection class of information,

4.
Blba [91 has workedon a generalpolicyto provide
degreesof such protection to thwart sabotage; the
trusted function was a first special case.

5These attributes are information in an equal Or
slightly higher protection class. The !Idirectoryt!
mechanism evolved as a way to handle this
information, although it was eventually realized
that the hierarchical organization of information
was only a functional requirement and not security
relevant. [101

oPROTECTION

OATA

BASE

Figure 1. Existing Security Model

independent of its container. The binding of pro-
tection and information in the paper domain is not
so obvious (or tenuous) as in a ccxnputersystem.

Hypothesis

Let us consider the existing information flow
model in figure 1. This model is primarily con-
cerned with the flow of information to and from
containers, within the system. Flow outside the
system can be modelled as a container on the boun-
dary of the system. The definition of permissible
flow is heId in the protection data base.

As we have noted, this protection data is not
necessarily static. The protection data base could
not be updated through the access controller,
though, because its protection policy seemed dif-
ferent from that of the other data. The best
determination of policy that can be arrived at by
examining existing solutions is that the protection
data base is protected on individual identity. It
is the individuals privilege that allows him to
examine or modify the protection data base.

To model the trusted function interface, we
can use the same information accessing framework of
the existing model, but with a new protection data
base. This “trust data base” will associate an
identity with the set of rights exercisable by that
individual. These rights will specify what protec-
tion data can be accessed and in what way.

It also makes sense at this level to allow the
trusted function interface to mediate access to its
own trust data base. (The hierarchy of access
mediators cannot go on forever.) Figure 2 illus-
trates the hypothesis and how it fits with the old
model. This proposal is concisely defined below,
by summarizing an existing information flow model
and proposing an extension.

Information Flow Model

The information flow model to be reviewed
models the problem of controlling the dissemination
of classified information in a computer system.
The approach is to control the access of the active
agents in the system (who can cause information
transfer) to the passive containers of information.

Es@.?2E.In the people/paper domain that is
tq be mimicked by the canputer system, all ‘!Data”

69

I
TRUST

CONTROLLER

I

o

TRUST

OATA

BASE

Figure 2. Proposed Model

is classified by an appropriate authority such that
one can imagine the llClassificationT1of data as
defining the set of observers allowed to view the
data. The model does not examine this concept of
classification; it takes the classification of the
information in each of its containers as an exter-.
nal given.

Model. The mode16 is made
Aceeaaors, ProtectionClasses, a
ClassCombination function.

where:

up of Repositories,
FlowRelation, and a

Repositories is a set of information con-
tainers; the containers define the pardels of
information protected in the model. The value
of a repository is the information it con-
tains.

Accesaors is a set of information manipula-
tors, a subset of Repositories; the accessors
are the model elements that can cause informa-
tion flow. The information flow operation of
an accessor consists of affecting the value of
one repository based on a function of the
values of other repositories.

The protection classes and flow relation make
up the protection data base. The protection data——
base is the model representation of the information
control policy of the paper domain. It is defined
as follows:

ProtectionClassesis the partitioning of Repo-
sitories into classes according to the sensi-
tivity of the information they contain (or can
transfer). For two repositories to be in the
same protectionClass,the “Classification”of
their data must be equal.

FlowRelation is a partial ordering of the
ProtectionClassesreflecting the relationship
of the sets of people allowed to access each
class. If oneProtectionClass is higher than
anotherProtectionClassin the FlowRelation,
then the “Classification” of repositories in

6The model deseribed is ~ review of a detailed

state-transition model that has been developed by
Denning [111.

oneProtectionClass is more restrictive than
that of anotherProtectionClass. (Here, “more
restrictive?’means only a proper subset of
people can view it, so in a sense its classif-
ication is ‘Ihighertt.)

Finally,

ClassCmbination is a function on a pair of
input protection classes that defines the
class of the result of any function on a pair
of values, one from each input class. The
resulting protectionClass is the class that
can be observed only by the set of observers
allowed to view both the input protection-
Classes under “Classification”.7

In the paper domain, we think of security as
meaning no information ever gets to a place where
someone who isn’t allowed to see it can see it.
Under the model, this idea can be stated simply:
the model system is secure if and only if no
sequence of operations can cause information to
flow from its container to a container lower in the
flow relation (thus incorrectly increasing the set
of observers of that information).

Security. We can state the idea of security
as an axiom about individual (indivisible)opera-
tions. (Preserving this axiom for single opera-
tions can be shown to imply the security of aggre-
gate operations.)

Security Axiom — Assuming a secure initial
condition, if an acceseor can cause informa-
tion to flo~from a set of eourceRepositories
to a destinationRepository~ if the
ClassCtmbinationof the protecti%Classes of
the sourceRepx,itorIes is not higher than the

ProtectionClass of the destinationRepository

under the FlowRelation, the system will remain
secure.

Tranquility. In early use of the information
flow model, an additional principle [121 was
assumed.

Tranquility Principle — The protectionClass
of an active (accessible) repository will not
change during normal operation.

The tranquility principle is in effect a statement
that the model is an in vitro experiment. The.—
additional principle is an assumption in the model
that must be shown for a “real” system.

Problem. The tranquility principle indicates
that the model assumes that the paper concept of
!!Classification!$is static. The model concept of
classification is static in that a repository does
not move from one protection class to another.

‘In her paper, Denning showed that Proteetion-
Clasaes, together with FlowRelation and
ClassCombination,forms a universally bounded
lattice.

70

This assumption is inappropriate because it
inhibits frequently required operations. As dis-
cussed, this problem is presently avoided by allow-
ing violations of the security axiom. A preferred
alternative would be to modify the model to account
for the reclassificationrequirement. (As also
mentioned, Storkts proposal has not been pursued
because OF the difficulty in specifying the formu-
lary.)

Trust Model

We now propose an alternative model, based on
the ad hoc mechanisms that have evolved in secure.—
system implementations. This model will provide a
basis for discussion for the remainder of the
paper.

S!wA!x” In the paper domain, we speak of
reclassifying ‘tDataIf.Since the model protects
repositories, the operation of reclassifying is
best modelled as a repository changing its protec-
tion class. Since the model does not embody the
classifying authority, the reclassificationdeci-
sion must come from outside the model. This deci-
sion can be thought of as based on the people/paper
concept of ‘?Custodianship!t,where the custodian of
any data is responsible for its classification
being maintained correctly.

Model. The extended information flow model to
handle reclassification (and thus trusted func-
tions), will be called the Trust Model. It is con-
cerned with the previous Repositories and
ProtectionClasses,and replaces the tranquility
principle by adding Trustees and a TrustFlap rela-
tion,

where:

Trustees is a set of agent identifiers of
those allowed to manipulate the protection
data base. They are trusted to maintain secu-
rity by placing repositories in the appropri-
ate protectionClass.

TrustMap is a relation of Trustees and Reposi-
tories defining which trustee is allowed to
maintain the classification of each reposi-
tory. If a trustee is related to a repository
by TrustMap, he has “Custodianship”of the
data in that repository. (The relation may be
a function whose value determines the specific
privileges and responsibilitiesof the custo-
dian.)

In the paper domain, the custodian of data is
trusted to maintain its appropriate classification
by not releasing it improperly and by upgrading it
or downgrading it as required. Careful selection
of custodians and significant legal penalties make
the correct discharge of this responsibility highly
probable.

Trustworthiness. Under the proposal, the
trust mechanism allows paper domain custodians to
perform their duties with respect to model informa-
tion. The mechanism described is intended to
enforce the requirement for responsibility through
an additional axiom.

Trust Axiom — If a trustee moves a repository
~o~teet~onClass to anotherProtection-
Class, ~ if that trustee is a custodian of
the repositofi according to the TrustMap, then
the reclassificationcan be trusted to leave
the system secure.

The claim is that enforcing this axiom when allow-
ing access to the protection data base of a com-
puter security system will solve the consistency
problem in a secure fashion.

Properties

The appendix introduces an example specifici~-
tion to motivate some important properties that
must be enforced for a proper implementationof the
trust model. Here, the properties are quickly
reviewed.

Authority. Each paper domain custodian must
be correctly associated with a representing
trustee, for proper determination of rights. A
password-like mechanism is a possible solution.

Continuity. Trusted changes to the protection
data of an object must ensure that all current
accesses to the object are still allowed. This
check is required to prevent breaches of security
from a potentially inconsistent state. Forcing
recomputation of all existing accesses to the
object is a possible solution.

Believability. Each trusted request must be
conveyed from the paper domain to the computer
domain in an integritous fashion, to prevent spoof-
ing. A protected communication channel is a possi-
ble solution.

W?!!w3!

In addition to the trust axiom, three proper-
ties must also be enforced in an implementationto
solve the consistency problem correctly. How these
four requirements affect the design of a decentral-
ized processing system is taken up in the next sec-
tion.

DECENTRALIZED PROCESSING

How are the elements of a decentralized system
affected by security? What is the correct
interpretation of our new model in a decentralized
case? Ignoring the trusted function for the
moment, the problem is how to create the effect of
access control in a system where the information
containers, information accessors, the access
controller(s), and the protection data base(s) are
not necessarily centrally controlled.

Requirements

First, a uniform policy must be established.
Even if initially different policies are enforced
by each site, for the sites to communicate, the
policies must map into each other; thus establish-
ing a uniform p31icy. To enforce the policy, some

71

access control mechanism must be placed between all
containers and accessors. Two obvious choices are
to control all the accessors or to control all the
containers.

Single-1ocation secure systems provide a
mechanism for protecting all containers; but, must
each access controller know about every accessor-
container combination in a network; or even all
combinations with the objects he controls? For-
tunately not, otherwise an information explosion
would occur. Since the model establishes object
classes that partition all objects according to
their protection requirements, each access con-
troller need only know what classes its objects
fall into and understand how the security policy
relates classes to one another.

Finally, a mechanism must be established for
communicating a protection class along with infor-
mation when it moves from the domain of one access
controller to another. One way to communicate pro-
tection classes is to have separate protected net-
work channels for each class of information. This
arrangement works well with existing single-
location systems; they can deal with communication
channels simply as a new type of external object.

Figure 3. Existing Network Design

Figure 3 gives a representation of the design
presently being pursued in an existing net-
work. [1,131 Here,the hope is to connecttogether
existingsingle-locationsystemsin a fashionsimi-
lar to the Arpanet.,only with carefulattentionto
security. Each informationchannelsuppliedby the
networkis treatedas an objectby both accesscon-
trollers. Whilethis designsupportsremoteinfor–
mationaccessing,it does not supportall the func-
tionsdesiredin a networkoperatingsystem.

Special Functions. If we examine the elements
of a decentralized processing system, we discover
additional needs. Remote reclassification,remote
use of tools, and remote login all present

8A less obvious choice is to control all

communication paths, an option as yet unexplored
in securing single-locationmachines, but enticing
in networks, where the communication paths are
explicit.

additional requirements.

A protected channel per class works well for
transmitting access data along with information.
Information moving from one location to another may
carry its protection class in this way. The abil-
ity..tochange the class of information, however, is
not supported by this mechanism.

For the user to invoke tools on a remote host
(as if he were local) his network connection should
support the same facilities as his terminal. In
particular, there is a need for the user to change
his working classification at various times
throughout a session, regardless of his maximum or
login classification.

Finally, the user interface to the distributed
system must be provided remotely. If a user is to
be authenticated (logged in) remotely from his
authentication data base, or if his authentication
is to be propagated to another node in the system,
the network data channels do not suffice.

All these requirements can be reduced to the
requirement of providing a trust interface in the
distributed case, over the network. Assuming that
a trust interface (enforcing the trust axioinand
obeying the continuity requirement)
single-location security systems in
discuss below how the authority and
requirements affect the design of a
to interconnect them.

Network Security

f7 r’

exists for the
the network, we

believability

secure network

r7 L-... . .. J~L_.-.-l .
AC,u ‘---”---lJ~ M

Figure 4. Secure Network Connection

Figure 4 shows a diagram of a secure network
connection between two single-locationmachines as
it might appear in the network of figure 3. In
this system, the data channels are provided by a
link-encrypted packet switch network, where the
switches are single-location,kernelized minicom-
puters. The figure illustrates why data channels
cannot support trusted communication.

Because existing security models only restrict
data flow to a particular class, and, because of
the nature of a class, the source and destination
of a data channel are not uniquely defined (they
might be any member of the class). The authority
principle can thus be subverted as in figure 4:
although the questionable data flows (arrows) are
to the correct level, under the security policy we

72

have no guarantee of the individual identity of the
sender or receiver.

In addition, a plain security policy (in par-
ticular, one that does not include some form of
integrity, cf., [9]) does not provide the addi-
tional believability principle of our model. If
the @icy cannot distinguish between an accessor
reading information from a lower class and the sym-
metric but separate operation of an accessor writ-
ing information to a higher class, the second
operation can be used to sabotage believability
(lower arrow in figure 4).

What is needed is a technique to authenticate
the parties in the communication (for authoriza-
tion) and to provide additional protection (for
believability) to meet the new trust requirements.

The communications network in a secure system
has been modelled as an data object shared by two
(or more) access controllers. A trusted communica-
tion channel to support a secure virtual connection
could be provided by a similar shared object for
trust controllers. Figure 5 gives a conceptual
picture of what is desired — a parallel but
separate network, enforcing the trust model
requirements.

—— --— .

\

~

TRuST)
NET

Figure 5.

Solution. The
in communication is
recognition code or
useful if a limited

Example Trust Network

requirement for authentication
usually achieved through a
password. A password is only
number know it. and if it can

be communicated without being overheard.

Assuming we cannot create a perfect channel,
the protection requirement for integrity could be
achieved through redundancy. This redundancy must
be such that any attempt to modify the data could
be detected, and perhaps corrected.

Cryptography can help provide both these
features. By disguising the information content of
a message, enciphering a message makes it very dif-
ficult to change the cipher version in a way that
is meaningful when deciphered. Enciphering data
raises the inter-bit dependency of the data suffi-
ciently that a small amount of redundancy in the
unenciphered data will allow detection of modifica-
tion. [14,151

Also, knowledge of a cipher key can act as a
password. The source of decipherable code is lim-
ited to those who possess the key. By design,
enciphered text does not reveal the encoding key,
so the password cannot be compromised. By limit:[ng
key distribution, the authentication can be made as
specific as necessary. [14]

Implementation. In an implementation,a
trusted function interfaces to the access monitor
through privileged calls. The trusted communica--
tion channel could be implemented by such a call,,

ENCIPHER DEcIPHER

Figure 6. Possible Trust Net Implementation

Figure 6 shows a minimal implementation. The
proposal is to provide privileged calls for enci-
phering and deciphering trust information. These
calls will add and make appropriate redundancy
checks to provide integrity. These calls will also
add identification information to each trust roes-
sage to provide authentication. Through encryp-
tion, these calls provide the trust network as a
specially protected virtual channel over the exist-
ing data network.

Because of their im~rtance, the privileged
calls must be specified and implemented as part of
the access controller and scrutinized for the same
level of credibility. The intent is that the
operation of these two calls can be verified at a
significantly lower expense than trying to verify
the network end-to-end protocol module or a whole
new channel.

Kent [16] has discussed at some length the
choice of a cipher scheme to allow authentication
and detection of modification. Wile these mechan-
isms are fairly expensive, the design proposed here
would limit their use to protecting trust data and
thus make their cost reasonable.

Once the trust information is enciphered by
the privileged kernel call, it becomes an unclassi-
fied object (its information content is zero to a
non-key holder). The enciphered package can then
be delivered using existing network commands.

II!.Psz. The end-to-end encryption channel
provided by the proposed privileged calls essen-
tially provides an “out-of-band” signal that can be
used by the trusted functions to communicate trust
information over a secure data netwwk,

73

I 3.MESSAGE I
VIRTUALCHANNELS

???

LINKENCRYPTION

Figure 7. Network Protocol Levels

Figure 7 illustrates how the proposal relates
to existing secure network protocols:

The bottom level (1) represents the existing
protection provided by secure networks. Here, the
internet protocol, the host addresses, and other
message data are unenciphered when in a network
node. Protection is provided during transmission
between network nodes by link encryption. The
dangers of this protection alone are known, and
work is under way to solve the problems in several
data networks.

The second level (2) represents the end-to-end
connection protocol that attempts to address the
denial of service problem in existing protocol
designs [171. Attempts to protect connections at
this level have been unsuccessful to date in that
they exhibit many of the same problems as the bot-
tom level [181, and yet, are significantly more
difficult to implement.

The top level (3) represents the present pro-
posal, a message level protocol. The intent is to
use a single connection (provided by the next lower
level) to support at least two virtual channels by
appropriately distinguishing messages.

CLEAR INTEGRITY.$CIPHER.,

/ A \

AOORE.W?RANSPORT INTEGRITYFUNCTION SEALEOMESSAGETEXT
I

TRUSTCIPHER

Figure 8. Sample Trust Message Content

Figure 8 shows a possible construction of a
trust message and how it fits in the lower network
protocols. Only a small amount of information
about the message need be protected using the net-
work *wtrustchannel!icipher: an integrity function
to provide authority and believability for the rest

of the message. (This function may be a secondary
cipher — different for each message.) The
integrity information acts as the !Isealt!of the
sender. If the receiver finds the seal unbroken,
he knows he can trust the contents.

Because the amount of information transmitted
using the trust cipher is small, the trust cipher
scheme need not be fast (it can be implemented in
software). Similarly, it need not be re-keyed
often.

If the lower level protocols can protect the
connection from a security standpoint (at the
highest level of data to be transmitted), the trust
cipher need not protect againat espionage from out-
side the system. Its duty is simply to inhibit the
effect of sabotage (or error) within the system.

W!?!!WY

An “out-of-band” channel has been proposed as
one way of providing the properties required for
trusted function implementation in a decentralized
system supported by a secure data network. Encryp-
tion was proposed as a technique for providing that
out-of-band channel, but all the power of tradi-
tional encryption schemes is not required. Perhaps
a better mechanism can be found.

CONCLUSION

The ccxnputersecurity problem (the need to
correctly regulate the sharing of data in a com-
puter system) has been thoroughly investigated for
single-location systems. The present technological
solution to the problem is the security kernel
mechanism. This simple mechanism assigns a protec-
tion class to each identifiable information reposi-
tory and then regulates the flow of information to
be only between repositories of compatible classes.

A deficiency discovered in the security kernel
is how to correctly assign a protection class to
information from outside the system (e.g., informa-
tion entered at a terminal) and how to maintain
consistency between the paper information domain
and the computer information domain (e.g., to fol-
low reclassifications). In the single-location
system, these problems have been solved by an ad
hoc mechanism called the trusted function. Thfi
=ction provides a reliable interface to the pro-
tection database of the kernel to allow updates to
that data.

In the decentralized processing case, where
information repositories are scattered and the pro-
tection data base is similarly distributed, the
trusted function is even more important becauae the
consistency problem is exacerbated. The operation
of the trusted function has been reevaluated in
this new setting.

The problem of how existing networks can
accommodate secure information sharing is seen to
hinge on support of the trusted function operation
in a more general case. Determining the

74

requirements of the trusted function leads to for-
malizing the concept of conxnunicatingprotection
information between security domains and the
development of a Trust Model.

The model distinguishes the protection infor-
mation as a special type of data that must be com-
municated in a trustable manner since it is crucial
to the general protection mechanism. Any solution
to this problem will impact the design of a decen-
tralized processing network and its protocols.

Finally, software-supported,end-to-end
encryption has been proposed as a possible method
for providing the requirements of trusted consnuni-
cations. The impsct of this mechanism on protocols
is seen to be minimal. Nevertheless, further
investigation is required to determine the best
possible solution.

ACKNOWLEDGEMENT

The author acknowledges the motivation and
help of S. R. Ames, Jr., Dr. J. G. Keeton-Williams,
and Dr. J. K. Millen of the MITRE Corporation in
developing the proposed model.

EXAMPLE

An example multiplexed processing system
specification is given to point out some important
properties of the trust model that must be con-
sidered in an implementation.

Trust System

Figures 9-17, give the elements of the trust
system. Figure 9 gives the top level module inter-
face that defines the behavior of the system. The
system is made up of a scheduler, a program proces-
sor, a kernel, and a trusted interface. It kIIOWS

of a number of requests, their associated parame-
ters, and can return a number of answers. Its
operation is defined by the ‘!Schedule!ffunction.
l!InputBuffer*Sand !Ioutputmffer!!,defined in the

kernel, are the interfaces to the system.

Figure 10 gives the scheduler module. This
model defines the overall operation of the system,
which consists of eternally choosing a process and
doing a ccxnputationfor it. The variable
*tcurrentprocessttdefines the multiplexing Of the
system.

Figure 11 is the program processor, responsi-
ble for computations. The “Canpute” function
defines the basic processor operation, which is to
open the program file, retrieve a request and
parameter for execution, perform the operation,
place the result in the accumulator, and increment
the program counter to point to the next portion of
the program.

The function “ArithLogic!tdefines the non-
security-relatedrequests that can be canputed by
the system. It supports binary functions on the
accumulator and the current readable memory por-
tion.

Figure 12 shows the kernel interface, which
defines all the security-relatedrequests that can
be computed by the system. The kernel supports
storage, processes, and inputloutput in a secure
fashion using the protection database.

Figure 13 gives the protection data module,
which defines the permissible information flows.
The function “PermissibleFlowttdecides whether
information may flow in a specified direction
between a memory object and the current process.
The function baaes its decision upon the ‘class~t
database, which for the moment is assumed correct.

Figure 14 is the storage portion of the ker-
nel. It ensures that informationmotion requests by
the current process to and from the memory are car-
ried out in accordance with the protection policy.
Storage supports three virtual memory areas for
each process: one each for reading input, writing
output, and accessing the program.

The “Map” function checks access to a speci-
fied area for a specified purpose and records the
result. The functions ‘!Get!t,‘tPutli,and ?!Execute!!
are used to access the area mapped for input, out-
put, and program, respectively.

Figure 15 shows the processes provided by the
kernel. The process module keepa track of the pro-
gram counter and accumulator registers for each
process and ensures that an executing process can
access only its own registers.

Figure 16 gives the inputloutputmodule of the
kernel. This module ensures that information
motion requests to and frcm the interface buffers
obey the protection policy. The interface buffers
are the areas of memory where devices that inter-
face to the paper domain exchange information with
the system. The functions ‘fInput!rand ‘tOutputttare
used to access the memory area appropriate to the
1/0 device or !!pm%t!desired.

Figure 17 defines the trusted interface to the
system. It is an attempt to address the earlier
assumption of correctness regarding the !tClass!l
protection database. I?ChangeClassOft!provides a
function to change the class of storage objects in
the system. Unfortunately, it depends on another
mysterious database, called ‘tProprietorshipft.

Observations

Two observations will be made about the system
before analyzing the trust interface:

First, note that “Map” in the storage module
obviates the need to ccmpute ‘lPermissibleFlow~leach
time the memory is to be accessed. This organiza-
tion has been found expedient in practice because
of the high frequency of memory operations, but it
leads to sane canplications in enforcing the pro-
posed model, as will be seen below.

75

Second, the interface buffers in the
input/output module illustrate the implementation
issues we wish to address. These buffers are
storage objects classified by the !!Classtifunction
in the protection data module, but the system has
no way of assuring that external access to the dev-
ices they interface is consistent with the internal
assignment. This problem is one facet of the con-
sistency problem.

Analysis

The trusted interface in figure 17 is the
implementation of the extended model to address the
consistency problem. The function purports to
allow a trusted user to update Class to keep it
consistent with the paper domain. Three additional
properties must be assured to achieve this goal in
an implementation,however; in addition to enforc-
ing the trust axicm we require: ‘Iauthorityf’,“con-
tinuity”, and !lbelievabilityl!.

Authority. Some mechanism is required to
ensure that only the correct authority is permitted
to exercise the “ChangeClassOf” function. In the

example specification, this assurance is indicated
by the argument ‘Iuser”. We have no reason to
believe, however, that a malicious user will prop-
erly identify himself.

The problem is similar to the problem of know-
ing the class of the input/output ports. For the
ports, however, we have some belief about the loca-
tion of the devices being static and protected phy-
sically. These facts allow the “Class” function to
be preset for ports.

A similar mechanism is needed to identify the
user on an individual basis, but we have no reason
to believe a user’s location static. The currently
accepted mechanism for authenticating the user of
an interface is the password mechanism.

Continuity. A scenario of operations that can
occur in the system is for one user to open a
storage object for writing, and then for another
user to lower the class of that object. Under the
present implementation specification, this scenario
leaves an information path for the unwitting first
user to leak information. Even though the down-
grade was ‘Trusted!!,something went wrong.

There are two immediate remedies to this prob–
lem: The memory unit can check the class of each
object at each access: a solution experience tells
us is infeasible. Or, the trust function may not
change the class of an object in use, a procedure
reminiscent of the old tranquility principle. A
third option would be for the trust function to
ensure that all users of the object can Still use

it or otherwise disconnect (unmap) them, thus main-
taining the continuity of the security policy.

Believability. Since the request buffers are
simply storage objects, protected only by class,
requests entered by devices using these buffers may
be sabotaged by anyone of appropriate classifica-
tion. Because the authority requirement depends on
the user’s identity, some means is needed to pro-
vide a believable request channel that can preserve
the integrity of the user’s request, also based on
identity (rather than just classification).

Solution

Figure 18 shows an updated trusted interface
that attempts to remedy the three implementation
problems discussed above.

A new set of interface channels, ‘fTrustChan-
nel!!, is added to provide a trustworthy and depend-
able communication with the user for !lBelievabil-
ity!t. While these channels are still associated
with the existing ports to devices, they do not
allow general access. Basically one can think of
them being input buffers under the control of the
kernel or trusted process. (If the trustworthiness
of the normal device is of concern, a special dev-
ice can be interfaced to the trusted channel.)

The “ChangeClassOff;function is modified to
read only from a trusted channel. The userqs pur-
ported identity is read from the trust channel and
will be verified against a password. (The pro-
tected channel is used here to maintain the secrecy
of the password, actually an unintended use of the
channel.) The arguments for class change, object
and new level, are also read from the trusted chan-
nel. If the password passes and the user is the
proprietor of the specified object, then the main
body of the function is entered.

An additional check is now made to see that
the object is not “inusell. This check represents
the second of the “Continuityrtoptions. (The third
was not pursued only because the existing permis-
sion function did not allow easy check of access
other than by the current user.)

If the object is not active, its new level is
set, and the proprietor is notified by the trust
channel. (Consistency would not be fulfilled if
the proprietor could be spoofed about the result.)

Summary

An example implementation of the trust axiom
as a trusted interface for a multiplexed processing
system has been presented. We have also noted
three properties that must be enforced in an imple-
mentation to solve the consistency problem
correctly: authority, continuity, and believabil-
ity.

9Other, more-sophisticated, authentication
mechanisms are under development and should be
used when feasible.

76

mbdule SystemInterfacez
ibr@n
exportsInputfkiffer,OutputBuffer,

withRequestName,PararneterType,AnswerType:

inclodesScheduler:
ProgramProcessor,
Kernel,
Trusted;

RequestName s (Map, Get, Put, Registers, Input, Output,
ArithLogic, ChangeClassOf):

ParameterType E setof (StorageChunk, Oirection,
Pt.ooessNumber, RegisterName,
PortName, BinaryFunction,
ProtectionClass, UserName);

AnswerType z oneof (Can’t, Ok, Value):

Schedule;

end System Interface:

Figure 9. Trust System Interface

module scheduler z
begin

exports Schedule;

exports current PrOcess to Storage, Processes, Protection:

ilanctica .%heduleo z
I

for (ever)
{
current PrOcess + Choice (PpocessNumber, c“rre”tpt.ocess):

Canpute;

continue:
)

)

end Scheduler;

Figure 10. Scheduler Nodule

moduleProgramProcessorz
begin
exwrtsCompute,ArithLogic:

flmctioaCo.puteo E
[
request : RequestName,
parameter: ParameterType;

Map(Registers (programCounter), program):
request + Execute .request:
parameter * Execute .parameter:

Register s(acaumulator) + reqUeSt(paraQIeter):

Registers (programCounter) +
Next(StorageChunk, Registers (programCounter)):

)

f%mctinn .4rithLogic (function: Binary Function)value:Value z
1

val!m? * function (Register s(accumuIator), Get);
)

end ProgramProcessor;

Figure 11. Program Processor Module

module Kernel ~
begin

exports Map, Get, Put,
with StorageChunk, Direction;
Registers,
with ProcessNumber, RegisterName:
Input, Output,,
with Port Name;

includesProtectionData,
Storage,
Processes,
InputOutput;

endKernel:

Figure 12. Kernel F!edule

module Protection Oata E
begin
exportsPermissibleFlow,

with Protect ion Class, Permission:

exprtsClass to Trusted:

fmction
PermlssibleFlow(location:StoraeeChunk,

{
permission +

)

direction: Direction) permission: Pemission z

if(direction = inputIdirection. program)
thenif(Class(location)< class(currentppocess))

them allowed:
else if(direction . output)
then if(Class(location) z Class (current Process))

then allowed:
else denied:

Class : array (StorageChunk U ProcessNumber)
of Protection Class initially‘securem:

ProtectionClassz (anyoneCanSeeIt,
kindOfImpm_tant,
realSensitive):

permission = (allOw~. deni~):

end Protection Data:

Figure 13. Protection Data Module

module Storage E
begin

exports Map, Get, Put,
with StorageChunk, Direction:

exports Execute to ProgramProcessor;

functionMap(direction:Direction,which:Storagechunk)~
{

if(PermissibleFlow(which, direction) = allowed)
then VirtualMemory(current Process, direction) + which:

)

ilaiction Getovalue: Value z
1

if(VirtualMemOr y(currentPrOcess, input) # null)
then value .+

Memory (Virtual Memory (current Process, input)):
)

functionPut.()z
(
if(VirtualMemOry(currentPrOcess,output)# null)
thenMemory(Virt.ualMemorY(currentProcess,OUt.put))-

Registers(accumulator) :
}

function Execute ovalue:Value E
{

if(Virtual MemOrY(current PrOcess, program) ; null)
then value +

Memory (Virtual Memory (currentProcess, program)):
)

Memory : array (StorageChunk) of Value
initially Memory (firstChunk) E “boot PrOg?am”:

VirtualMemory : array (Process Number, Direction) of Storage Chunk:
StorageChunk s (first Chunk, secondChunk, . . . lastchunk):
Direction z (input, program. output);

end Storage:

Figure 14. Storage Module

module Processes 5
begin

expnrts Registers,
with Process Number, Register Name:

Registers E All Registers(ourrent Process):

All Registers : array (ProcessNumber, Register Name) of Value
initially All Registers (firstProcess.

programcounter) E first chunk:
ProcessNumber E (first Process, second Process, . . . last Process):
Register Name E (accumulator, programCounter):

end Prooesses:

Figure 15. Process Module

77

mdule InputCutput ~
begin

exports Input, Cutput,
with PortName;

exports Input Emffer, OutputIWffer to SystemInterface:

flmctlonInput (port: PortName)value: Value >
f
‘if(PermfssibleFIow(InputBuffer(port), input) . allowed)
then value * Memory (InputBuffer(pot.t)):

)

f’mctlon Cmtput(port: PortName) s
I

if(PermissibleFlow(OutputE!uffer(pxt), output) = allowed)
then Memory (OutputBuffer(port)) +

Registers(accumulator):
)

interfaceInput~ffer:array(PortNarne)ofStorageChunk:
interfadeOutput&ffer:array(PortName)ofStorageChunk:
PortNameE (frontPanel,

consoleTerminal,
anotherTerminal,
bigTape,
linePrinter,
aNetConnection);

end InputCutput:

Figure 16. Input/Output Module

module Trusted z
begin

e-~ Chanaeclassof,
with User N-:

fhmctiam ChangeClassOf(user: UserName,
which : Storage Chunk,
new: PrOtecti OnClass) 5

(

if(user . Proprietorship(tiich))
then Class(ubich) + new:

)

Proprietorship : array (StorageChunk) of UserName
initially ‘trusted.:

UserName z (m, You, . . . others):

end Trust:

Figure 17. Trusted Interface Nodule

module Trusted 3
begin

exgc.rts ChangeClassOf,
with U.serName:

exports Trust Channel to Syste.mInterfaoe:

ftmction ChangeClassOf(argune”tChannel: pOrtName) ~
I
user :UsePName,
password: Value;
whi.h:StorageChmk,
new: Protection Cl*ss:

user + Trust channel (argune”tchanne l). user:
password + TrustChannel (argume”tChannel).password:
which + TrustChannel (a?gmentChannel).storage~unk:
new + Trust Channel (argument Channel).protecticm Class;

If(password . Password (user))
then If(wer . Proprietorship(which))

then If(g pr.aoeaa e ProcessN”mber, direction e Direction $
Vi?tualUemory(process, direction) = uhich)

then TrustChannel(argumentChannel) .+ Can, t:
else
{
Class (khich) + new:
TrustChannel(argume”tChannel) + Ck;

)
)

Proprietorship : array (StorageChunk) of UserName
initially trusted.:

interf8ce TrustChannel : art-ay(PortName) of Valwe:
Password : atwy(USerNaU,e) of Value initially .tr”sted”;
UserName z (me, You, . . . others):

emd Trust:

Figure 18. Bettev Trusted Interface

REFERENCES

1. p. A. Kargef-, ltNon-disc”retionaryAccess Gon-
trol for Decentralized Systems,” LCS/TR-179,
MIT Laboratory for Computer Science, Cam-
bridge, Massachusetts, May 1977.

2. R. H. Thomas, R. E. Schantz, and H. C. Fors-
dick, I!NetworkOperating Systems,” RADC-TR-

78-117, Rome Air Development Center, Griffis
Air Force Base, New York, May 1978.

3. D. P. Geller and K. Sattley, ‘tNati?nal
Software Works Userfs Reference Manual System
Version 2.1,” CADD-71O-2611, COMPASS, Wake-
field, Massachusetts, October 1977.

4. D. F. Stork, IfDowngradingin a Secure Mul-
tilevel Computer System: The Formulary Con-
cePt,**ESD-TR-75-62, The MITRE Corporation,

Bedford, Massachusetts, June 1974.

5. D. E. Bell, R. S. Fiske, M. Gasser, and P. S.
Tasker, ‘Secure On-line Processing Technology
— Final Report,” ESD-TR-74-186, The MITRE
Corporation, Bedford, Massachusetts, August
1974.

6. W. L. Schiller, t!TheDesign and specification

of a Security Kernel for the PDP-11/45,’1
ESD-TR-75-69, The MITRE Corporation, Bedford,
Massachusetts, March 1975 (AD A01171).

7. J. Mogilensky, ‘A General Security Marking
Policy for Classified Ccmputer Input/Output
Material,!tESD-TR-77-259, The MITRE Corpora-
tion, Bedford, Massachusetts, May 1975 (AD
A016467).

8. W. L. Schiller, t~TheDesign and Abstract

Specification of a Multics Security Kernel,!!
ESD-TR-77-259, volume 1, The MITRE Corpora-
tion, Bedford, Massachusetts, January 1977.

9. K= J. Biba, !Irntegf.ity Considerations for

Secure Computer Systems,” ESD-TR-76-372, The
MITRE Corporation, Bedford, Massachusetts,
April 1977.

10. S. R. Ames, Jr., llFileAttributeS and Their

Relationship to CcinputerSecurity,’tESD-TR-
74-191, Case Western Reserve University,
Cleveland, Ohio, June 1974.

11. D. E. Denning, WA Lattice Model Of SeCUre

Information Flow,” Communications of the ACM—— —~
volume 19, number 5, May 1976, pp. 236-243.

12. D. E. Bell and L. J. LaPadula, ltSecureCom-
puter Syst.ema,nESD-TR-73-278, volumes 1-3,
The MITRE Corporation, Bedford, Mas-
sachusetts, April 1975.

78

REFERENCES (Concluded)

13. G. D. Cole and D. K. Branstadt (editor),
?!DesignAlternatives for Computer Network
Security,” publication 500-21, volume 1,
National Bureau of Standards, Washington,
District of Columbia, January 1978 (PB 276
771).

14. G. J. Popek, and C. S. Kline, “Design Issues
for Secure Computer Networks,” Operatin~~-
tems — An Advanced Course, R. Brayer et al.,
=tors~ Springer-Verlag, Berlin, Germany,
1978, pp. 518-5.46.

15. R. M. Needham and M. D. Schroeder, “Using
Encryption for Authentication in Larg,eNet-
works of Ccmputers,**Communications of the——
~, volume 21 number 12, December 1978, pp.
993-999.

16. S. T. Kent, !IprotocolDesign Considerations

for Network Security,IINATO Advanced Studies

Institute on Interlinking of Computer Net-
works, Bon=, France, Augu~ 28-Septem= 8,
1978.

17. J. Postel (editor), !!TransmissionCOtltrOl

Protocol (TCP) — Version 4,” IEN: 81, Infor-
mation Sciences Institute, Marina del Rey,
California, February 1979 (AD A067072).

18. M. A. Padlipsky, D. W. Snow, and P. A.
Karger,!lLimitationsof End-to-End Encryption
in Secure Computer Networks,ttESD-TR-78-158,
volume 1, The MITRE Corporation, Bedford,
Massachusetts, May 1978.

79

