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ABSTRACT

A group at Symbolics is developing a Lisp
runtime kernel, derived from it’s Genera1

operating system, to support real-time
control applications.  The first candidate
application has strict response-time
requirements (so strict that it does not permit
the use of paged virtual memory).
Traditionally, Lisp’s automatic storage-
management mechanism has made it unsuit-
able to real-time systems of this nature.  A
number of garbage collector designs and
implementations exist (including the Genera
garbage collector) that purport to be “real-
time”, but which actually have only miti-
gated the impact of garbage collection suffi-
ciently that it usually goes unnoticed by
humans.  Unfortunately, electro-mechanical
systems are not so forgiving.  This paper
examines the limitations of existing real-
time garbage collectors and describes the
avenues that we are exploring in our work to
develop a CLOS-based garbage collector
that can meet the real-time requirements of
real real-time systems.

1Symbolics, Genera, and Ivory are registered
trademarks of Symbolics Incorporated.

1 INTRODUCTION

There have been many proposals and
implementations of “real-time” garbage
collectors, where a real-time collector is
typically defined as  one such that  “the exe-
cution of the main program never be sus-
pended for the long time that garbage col-
lection usually requires” [Wadler 76], or
such that  “the programmer would still be
assured that each instruction would finish in
a reasonable amount of time” [Baker 78].
Under this definition, even generational
garbage collectors have recently been touted
as being nearly real time. [Ungar 84]  In
previous work, the primary thrust of the
design of real-time garbage collectors has
been to show that the garbage collector can
do its job in unnoticeable increments and
still “keep up” with the running program,
without requiring significantly greater total
storage than traditional garbage collectors
(which have the luxury of stopping the
running program while they clean up).  This
paper considers whether any existing
garbage collection scheme can be considered
real-time enough to qualify under the
original statement of the problem “when
stringent upper bounds are placed on the
maximum execution time for each List oper-
ation performed” [Knuth 69].
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2 BACKGROUND

One of Lisp’s primary features is it’s auto-
matic storage management system that frees
the programmer from that typically onerous
task.  Lisp’s storage management is imple-
mented using one of any number of tech-
niques that  are commonly know as “garbage
collection”.  Garbage collection (or perhaps
more contemporarily, recycling) has three
primary facets, each of which impacts the
overhead associated with and delays intro-
duced by automatic storage management and
each with a range of solutions.  For the pur-
poses of our real-time system, we are con-
cerned mostly with delays introduced by
garbage collection.  We are willing to trade-
off increased garbage-collection overhead
for a guarantee that introduced delays are
both bounded and small with respect to the
response-time requirements of the
application.

2.1 When to Collect

The first facet of garbage collection is a
policy to decide when to perform garbage
collection.

Traditional collectors wait until the last
minute.  This reduces the interference with
the running program, except that when it
finally must run, there can be a long inter-
ruption while the entire address space is
scanned looking for recyclable objects.

At the other end of this spectrum, one could
garbage collect continuously on a separate,
parallel processor.  Aside from interlocking
problems, this approach would seem to
guarantee the best performance of the run-
ning program with the least possibility of it
running out of free storage.  Unfortunately,
it is also a great waste of processor power.

Somewhere in between are the strategies of
current real-time garbage collectors, which
try to run just in time to avoid overflowing

available storage, thus avoiding unnecessary
garbage collection overhead.  Another crite-
ria that might be used would be w h e n
worthwhile; if there were some way of
knowing that there is a lot of potentially
recyclable material at a particular time. or
that the application will be idle for some
time.

The policy as to when to start garbage col-
lection has little direct impact on garbage-
collection induced delays.  It has indirect
impact, as noted in the case of the last-
minute policy, because it can have implica-
tions on how the other two aspects of
garbage collection are addressed.  The direct
impact of the policy on when to collect is
bounded by any synchronization required
with the running program in order to make
the decision to collect.  Typically, there is no
synchronization required to make this deci-
sion, as it is based solely on the ratio of used
to unused storage.

2.2 What to Reclaim

The second facet of garbage collection is a
mechanism to identify reclaimable objects.

Conventional programming languages typi-
cally use explicit requests by the running
program to determine what should be
reclaimed.  This technique is error-prone,
because in a complex program it is possible
to accidentally release an object when it is
still in use by some other part of the pro-
gram.  Nonetheless, explicit reclamation can
have a place for objects that are closely
managed but created and destroyed at
extremely high rates or live for very brief
intervals.

At the other end of this spectrum is recla-
mation by discovery.  Many garbage collec-
tors use this technique to find recyclable
objects with no effort on the part of the run-
ning program.  The discovery process must
be correct:  an object mistakenly classified
as recyclable will break the running pro-
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gram.  On the other hand, the discovery pro-
cess does not have to be complete:  if it
misses some recyclable objects, it is less
efficient; but this type of sacrifice is often
made to reduce the overhead of garbage
collection.  (Generational collectors use par-
tial discovery in the sense that they limit
discovery overhead by only trying to dis-
cover recyclable objects in specific subsets
of all storage.)

Again, there is a middle ground of coopera-
tion between the running program and the
garbage collector.  It may still appear auto-
matic to the programmer, but there may be
code or hardware to force the running pro-
gram to cooperate with the garbage collector
in enumerating recyclable objects.  Typical
instances of cooperation are “reference
counting” and “read and/or write barriers”.

The problem of how to identify objects for
reclamation has a range of impacts on the
delays introduced in the running program,
depending on the choice of solution.  These
impacts are discussed more fully below,
under DESIGN.

2.3 How to Recycle

The third facet of garbage collection is a
mechanism to recycle unused objects.

One possible choice of how to recycle would
be to reuse objects (the same way bottles
used to be returned to be refilled).  Reuse
requires that the various sizes of containers
be kept sorted out, but depending on how
the sorting is done, this technique can lead to
low overhead (by analogy, you don’t have to
re-make objects from raw materials).  A
possible problem is that you might misallo-
cate your supplies and run out of a particu-
larly popular size.

At the other end of this spectrum is recy-
cling— collecting all the unused objects and
turning them back into raw materials to
make new objects from.  This solves the
problem of misallocated resources, but is

potentially subject to a longer lead time (to
recover raw material from unused storage,
you typically must copy or compact all the
pieces still in use).

The choice of how to recycle has minimal
impact on garbage-collector introduced
delays if done in a reasonable fashion.  The
only synchronization requirement is at the
point where recovered storage is added back
to the free pool that the running program is
taking from.  Methods exist for implement-
ing the recycling process in a discrete fash-
ion, where each step either has a bounded
execution time or is interruptible.

3 PROBLEM STATEMENT

We believe that a garbage collection system
as good as the existing Genera system will
satisfy the needs of our Lisp kernel for the
most part.  The exception is in routines that
are directly controlling electro-mechanical
equipment.  Our plan is that these routines
can be assigned a priority (or run in a high-
priority process) that will inform the garbage
collector that it must be especially careful
not to introduce any undue delays during
their operation.

Typically, this will mean that the garbage
collector will be prevented from starting a
collection when one of these critical routines
in running.  We also believe that the uninter-
ruptible time required to start a collection (in
the Genera system, this is the time to “flip”,
which involves setting up the hardware
oldspace registers and copying the root
state) can be minimized by careful choice of
what to include in the root state and what
can be deferred for later scavenging.

Where the problem arises is when a garbage
collection is already in progress when a
critical routine is called into action (an
unpredictable event, due to the nature of the
application).  In this case, the existing
Genera garbage collector (and all other non-
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reference-counting garbage collectors that
we know of) can introduce unbounded
delays when the running process and the
garbage collector must synchronize in
identifying the objects to be reclaimed.

In Genera this unbounded delay comes from
the “read barrier”, which prevents the run-
ning process from creating new references to
objects that have been declared candidates
for recycling by the garbage collector.
When the running process touches an object
that the garbage collector has declared is a
candidate for recycling, but which it has not
yet made a decision on, the running process
is (transparently) forced to copy the object to
protect it from collection (effectively doing
the garbage collector’s job for that object
immediately).  If a high-priority (fixed
response-time) task is started immediately
after a garbage collection has been started, it
may encounter many such objects.  While
each copy operation is bounded by the size
of the object, the total number of objects
referenced by the running task can lead to an
arbitrary delay.  Copying time is propor-
tional to the object size in the current Genera
system, although we know of techniques to
mitigate this time by doing partial copying
of large objects.  But, even with the partial
copying solution (which typically involves
copying at least one virtual-memory page of
the object, plus setting up the remaining
pages to fault) the overhead of copying is
significant with respect to the normal cost of
an object reference (a page worth of reads
and writes, as opposed to a single read).
This problem is the crux of our current
research.

4 DESIGN

The design of the garbage collector for our
Lisp kernel draws heavily on the Genera
garbage collector design. Because there is no
demand-paging in our system, the garbage
collection design is simpler— there is no

concern of locality of reference or latency in
scanning pages.2

New in our design is an object-based
implementation of the storage subsystem.
Our implementation is in a subset of CLOS
(a subset, to avoid circular dependencies).
This implementation choice is driven by a
desire to experiment with different garbage-
collection philosophies, but it also has the
benefit of letting us support several different
policies by dividing storage into areas and
making the policy and mechanism decisions
generic on area.

4.1 Deciding when to collect

The decision of when to recycle in our sys-
tem is made using a just in time policy based
on Baker’s algorithm [Baker 78] as
described in [Moon 84].3  The system has
adjustable parameters to balance garbage
collection with the running program, delay-
ing garbage collection as long as possible
while still guaranteeing that the garbage col-
lector can keep up with the running program
without running out of storage.  A research
project is to develop a more effective
method for deriving the correct parameter
settings other than by trial-and-error.
Currently, conservative, static settings are
used, guaranteeing sufficient free storage at

2Our design includes a provision for “computable”
areas:  areas of virtual memory where the contents of
the page is computed by calling an area-specific
function and where the physical storage backing a
virtual page is recovered by calling an area-specific
function.  This mechanism can be used to extend our
system to support demand paging by having an area
whose compute and release functions are “page-in”
and “page-out”.

3There is both a local policy on generations (by
statically set capacities) and a global policy that
monitors the total storage consumed and will initiate a
collection in time to finish while maintaining an upper
bound on overhead.  Once a collection is started, the
overhead is adaptively adjusted to ensure finishing
even if the collection is stalled by high-priority
processes.
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the expense of the productivity of the run-
ning program and the garbage collector.
The one modification to the Genera design
on when to recycle is factoring in the prior-
ity of all currently running processes:  when
a process with a deadline priority is running
(that is, able to run, although potentially
being time-sliced), the garbage collector will
not initiate a collection.  As in Genera, a
collection can also be initiated manually, at
the behest of the application, to allow a
when worthwhile policy.  (The first applica-
tion has known periods of inactivity which
are ideal times to run garbage collection; but
this does not obviate the need for on-going
garbage collection during high-activity.)

4.2 Choosing how to recycle

We plan to offer several choices of how to
recycle, as Genera does.  By dividing all of
storage into areas, different recycling poli-
cies can be offered on each area.  We plan to
have areas that implement a reuse policy,
typically for large similarly-sized objects
that are used for short periods4.  A special
kind of area will offer efficient recycling
with low overhead by being managed as a
stack.  Most areas, though, will use a copy-
ing collector to recycle unused objects.  We
believe that the overhead of copying live
objects can be made arbitrarily small by one
of several techniques:  really large objects
will be segregated into special areas where

4Genera implements explicitly managed objects using
a facility called R e s o u r c e s .  Resources are
implemented totally in “user” code, with no support
from the storage management system except when the
resource manager changes the total number of objects
in the resource:  objects are added by allocating them
in the normal way, and removed by making sure there
are no references to them.  The objects managed by the
resource are not garbage collected, because they are
always referenced by the resource.  In our real-time
kernel, we feel we can do a better job by putting this
facility into the storage management system directly.
We believe we can offer the benefits of explicitly
managed objects and also some of the safety of an
automatic system by letting the automatic system
know about these explicitly managed objects.

they can be page-aligned, and copied by
remapping using virtual memory hardware
(forwarding i implemented by keeping a
table of the moved objects).  Smaller objects
will either be of negligible size or amenable
to partial copying, again using virtual mem-
ory hardware to catch references to uncopied
portions (in this case,  the pages associated
with the copy are create-on-demand, with
either a table or per-object pointer to find the
original).

4.3 Discovering what to reclaim

For the just in time policy to not introduce
large delays, the discovery mechanism must
run in parallel with the application.  For dis-
covery to do a correct job, there must be
some synchronization between the collector
and the application:  they must synchronize
when determining the “live” data (otherwise
live data could be mistakenly assumed dead,
or vice versa— the former will result in a
malfunction, the latter in inefficient use of
memory).

We examined each mechanism we know of
for determining recyclable objects.  As
pointed out above, these mechanisms range
from the application doing all the work, to
the collector doing all (or nearly all) the
work.  None of the existing mechanisms was
totally satisfactory:

4.3.1 Explicit mechanism

While we will support explicit deallocation
for special cases, we dismiss using it in
general as not being in the spirit of Lisp.

4.3.2 Reference Counting

We considered reference counting as a
mechanism.  Reference counting solves the
synchronization problem similarly to the
explicit mechanism, in that the application
does all the work of determining what is
recyclable— but it is an automatic mecha-
nism.  Reference counting introduces a
fixed, bounded delay on each write opera-
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tion:  incrementing the count on the object
for the new reference, and decrementing the
count on the previously referenced object, if
any.  For predictability, reference counting
seems ideal.  We have shelved it as a choice
because we believe we can develop a solu-
tion that does not introduce the fixed time
overhead on all writes, the overhead of a
reference-count field on each object, and
because of reference-counting's flaw of not
being able to recover circular structures.

4.3.3 Stopping

The simplest solution to synchronizing the
application and the collector during discov-
ery is to simply stop the application.  If we
could develop a fast enough algorithm for
discovery (or if the hardware were fast
enough and the amount of storage to be col-
lected over small enough), this solution
would work.  This solution is reasonable in a
system where storage is partitioned and only
partial collections are ever performed.  This
solution does work for many Lisp systems
where the absolute real-time constraint is
measured in tenths of a second.  This solu-
tion is not feasible for our application, both
because of our real-time constraints and
because of an availability constraint that
implies full collections must also be periodi-
cally performed without greatly increasing
delays.

If the application cannot be stopped for the
entire discovery process, we need at least to
make a good approximation to stopping it.
The problem is to get a consistent
“snapshot” of the reachability of all objects
while the application is actually changing
things out from under us.  The trick used by
the next two mechanisms is to stop the
application while snapshotting the root of
the reachability tree and then utilizing hard-
ware virtual-memory support to catch any
changes the application makes to reachabil-
ity “behind the back” of the collector.

4.3.4 Write Barrier

A write barrier can be used to catch new
references created by the application in stor-
age the collector has already scanned for live
data.  Using a write barrier, the collector can
scan all of storage completely in parallel
with the application except for a final
“cleanup” phase when it corrects its concep-
tion of the in-use objects by re-scanning
those that were modified during the parallel
phase.[Boehm 91]  Multiple parallel phases
can be run to reduce the size of the clean-up
phase, but in the end, the clean-up phase
must run with the application stopped.  We
liked this mechanism a lot, but were con-
cerned that  we either would not be able to
guarantee an upper limit on the interruption
of the application caused by the clean-up
phase, or, if we ran parallel phases until the
cleanup phase were within fixed bounds,
there might be situations during periods of
high application activity where garbage col-
lection would be delayed beyond just in
time, leading to storage exhaustion.

4.3.5 Read Barrier

As we have indicated above, Genera uses a
read-barrier to ensure synchronization dur-
ing the discovery phase.  Essentially, in
Genera, any object the application gets to
during a garbage-collection before the col-
lector does, the application copies itself.
This gives a smaller bound on the incremen-
tal delay introduced by garbage collection,
since each object found in this way is copied
individually (as opposed to the write barrier
solution which eventually must pick a point
to deal with all the changed objects e n
masse, and delay the application for the
entire process).  But, as we have described,
we are concerned that the cumulative delays
created by the read barrier immediately after
a collection is started may exceed the
response-time limits imposed by the
application.
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4.3.6 Proposal

Our proposed solution is an amalgam of the
write and read barrier solutions.  We pro-
pose to implement the Genera mechanism,
with the modification that when a critical
task is running, the read-barrier will be
relaxed to a write barrier.  Thus, rather than
the critical task being forced to copy objects
it references, it will be allowed to proceed,
with the write barrier noting if the reference
is stored to an object the collector has
already examined.  When the critical task
completes, the collector must re-scan the
objects so noted.  Because the normal mech-
anism is a read barrier, we avoid the concern
we had with the write-barrier mechanism of
not being able to converge during a high-
activity period

5 IMPLEMENTATION

Our implementation will utilize the hard-
ware support of the Symbolics Ivory archi-
tecture for it’s read and write barriers and
will make use of the architecture’s invisible
pointers to note forwarding.  The implemen-
tation follows the Genera implementation
described in [Moon 84].  The implementa-
tion is modified for the case of a high-prior-
ity task running using an algorithm similar
to that of [Boehm 91], except that the Ivory
architecture simplifies the implementation.

When a high-priority task is running and
takes a read-barrier trap (because it refer-
ences an object in oldspace), the read-barrier
trap determines if the object has already
been copied by the collector.  If this is the
case, the reference is replaced with the copy
and the task continues (this is the normal
Genera mechanism for this case).  If the
object has not yet been copied, read-barrier
traps are disabled for the page in which the
reference lies (and that page is noted as
needing to be scanned for references by the
collector when the task exits) and the task is
allowed to proceed using the old object.  If
the old reference is stored into any object

that the collector has already examined, a
write-barrier trap is taken so that page can
be noted as needing to be re-scanned.5

When the critical task exits, the collector
starts a clean up phase.  The cleanup
involves simply scanning or re-scanning the
pages noted during the high-priority task’s
execution.  Because we use the same mech-
anism to note pages as we use to mark pages
for scanning in the normal case, the clean-up
phase is implemented by simply changing
the normal scan to first re-scan pages it has
already scanned that became “unscanned”
due to a write-barrier trap.  Once these pages
have been cleaned up, the collection can
continue normally.  Because of the avail-
ability of invisible pointers, there is no need
of recopying as in Boehm’s algorithm.
Finally, while we run the cleanup phase with
normal-priority processing stopped, we do
permit high-priority tasks to execute.  We
depend on the high priority tasks taking a
small enough percentage of the CPU and
being limited enough in their effect that the
cleanup phase will eventually reach closure
and return to the normal read-barrier based
collection.

5Note that a new reference might be created by storing
through an old reference or a new reference.  In the
case of storing through  an old reference, the object
may or may not have been copied.  In the latter case,
the collector has not yet scanned the object, hence no
write-barrier trap need occur.  In the former case, since
copied objects are replaced with invisible pointers to
the new copy, the hardware will automatically forward
the store to the new copy.  As a result, we need only
enable write-barrier traps on copied objects.  The same
trap suffices for stores using a new reference.

The  write-barrier “Trap” is actually implemented
using the hardware modified bit.  As the collector
scans the root set, it clears the modified bit on pages it
has examined (or pages it skips, because they are in
new space).  The clean-up phase simply involves
scanning any such pages that become modified.  (If we
do implement demand paging, the modified bits will
have to be “virtualized” to serve both purposes.)
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6 SUMMARY

We have described a problem with current
real-time garbage collector mechanisms that
prevents their use in applications with strict
response time requirements.  We have pro-
posed a new hybrid mechanism that reduces
the garbage-collection induced delays for
critical tasks to a few instructions for each
object referenced (as opposed to instructions
proportional to the size of the object).  We
are currently implementing this proposal in a
Lisp runtime kernel to support real-time
control applications.
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